Zeros of orthogonal polynomials on the real line
نویسندگان
چکیده
منابع مشابه
Zeros of orthogonal polynomials on the real line
Let pnðxÞ be the orthonormal polynomials associated to a measure dm of compact support in R: If EesuppðdmÞ; we show there is a d40 so that for all n; either pn or pnþ1 has no zeros in ðE d;E þ dÞ: If E is an isolated point of suppðmÞ; we show there is a d so that for all n; either pn or pnþ1 has at most one zero in ðE d;E þ dÞ:We provide an example where the zeros of pn are dense in a gap of su...
متن کاملSzegő and para-orthogonal polynomials on the real line: Zeros and canonical spectral transformations
We study polynomials which satisfy the same recurrence relation as the Szegő polynomials, however, with the restriction that the (reflection) coefficients in the recurrence are larger than one in modulus. Para-orthogonal polynomials that follow from these Szegő polynomials are also considered. With positive values for the reflection coefficients, zeros of the Szegő polynomials, para-orthogonal ...
متن کاملAsymptotics of Derivatives of Orthogonal Polynomials on the Real Line
We show that uniform asymptotics of orthogonal polynomials on the real line imply uniform asymptotics for all their derivatives. This is more technically challenging than the corresponding problem on the unit circle. We also examine asymptotics in the L2 norm. 1. Results Let μ be a nite positive Borel measure on [−1, 1] and let {pn}n=0 denote the corresponding orthonormal polynomials, so that ∫...
متن کاملZeros of Polynomials Orthogonal on Several Intervals
Let a1 < a2 < . . . < a2l, Ej = [a2j−1, a2j ], put E = ⋃l j=1 Ej and H(x) = ∏2l j=1(x − aj). Furthermore let pn(x) = x + . . . be the polynomial of degree n orthogonal on E with respect to a weight function of the form w/ √ −H with square root singularities at the boundary points of E and w ∈ C(E). We study and answer the following questions: how many zeros has pn in the interval Ej , j ∈ {1, ....
متن کاملOn extreme zeros of classical orthogonal polynomials
Let x1 and xk be the least and the largest zeros of the Laguerre or Jacobi polynomial of degree k. We shall establish sharp inequalities of the form x1 < A, xk > B, which are uniform in all the parameters involved. Together with inequalities in the opposite direction, recently obtained by the author, this locates the extreme zeros of classical orthogonal polynomials with the relative precision,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2003
ISSN: 0021-9045
DOI: 10.1016/s0021-9045(03)00038-8